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An examination is made of the irregular motion of a solid particle in a turbulence 
chamber. Theoretical results obtained are compared with experimental data. 

Many industrial processes involve the motion of solid particles in rotating flows of a 
continuous medium. Information on the character of motion of the particles and their veloci- 
ties and paths is of definite interest for improving the production processes. We will ex- 
amine the motion of a particle in a rotating gas flow bounded by a lateral surface and two 
end covers in a turbulence chamber (the tentative term for all equipment with a swirling flow 
of a continuous medium). With the presence of a central sink, the particle is acted upon by 
a radial resistance force which may compensate for the centrifugal force present, and the 
particle will move in an equilibrium orbit if the orbit radius r is less than the chamber 
radius R [I]. If r > R, the particle will intensively interact with the walls, executing 
more or less periodic jumps along the generatrix of the chamber (Fig. I). Here, particle 
velocity decreases significantly as a result of the loss in the impacts with the wall, and 
the particle begins to lag behind the carrier flow. The interaction of the particle with the 
wall also gives the particle an angular velocity of rotation w and thus creates a Magnus force 
transverse to the velocity. The possible role of the Magnus force in the generation of irreg- 
ular particle motion and its consequent deceleration was examined in detail in [I], where it 
was shown that in a certain range of values of the criterion ~ = 5hp/pld the particle is ef- 
fectively slowed as a result of its interaction with the end walls of the chamber. In suffi- 
ciently high turbulence chambers, particles move in the plane of the chamber (Fig. I) and 
interact mainly with its lateral surface. At first glance, it is not clear what causes the 
irregular particle motion because the particle does not move along the chamber generatrix at 
the velocity of the carrier flow but lags significantly behind it. In the present article, 
we propose a simple model which can be used to successfully explain and describe these phe- 
nomena concerning particle motion in a turbulence chamber. 

The equation of particle motion, subject to a quadratic resistance law, has the form 

dw 
- -  ~u  §  • ~ ] ,  u =  V - - w ,  

dt 1 ) 

= 35---9--~ lul, k = k~p/m, lul = [ (v~- -  ~r)~+ (v~ - -  ~)~+(V~ --w~yl '/2 
4dpl 

I f  t h e  p a r t i c l e  i n t e r a c t s  w i t h  t h e  l a t e r a l  s u r f a c e  of t h e  c h a m b e r ,  e x e c u t i n g  more or  l e s s  
r e g u l a r  j u m p s ,  t h e n  w i t h  each  i m p a c t  i t  l o s e s  some of  i t s  r a d i a l  momentum ( w i t h  a r e s t i t u t i o n  
c o e f f i c i e n t  n < 1 ) .  In  t h e  c a s e  of s t e a d y  m o t i o n ,  t h e  l o s t  p o r t i o n  of  r a d i a l  v e l o c i t y  s h o u l d  
be c o m p e n s a t e d  f o r  by t h e  work done by t h e  r e s i s t a n c e  f o r c e  of  t h e  f l o w  and t h e  Magnus f o r c e .  
I t  i s  n o t  h a r d  to  show t h a t  t h e  work done by the  Magnus f o r c e  in  t h e  c a s e  of  a c e n t r a l  s i n k  
i s  n e g a t i v e ,  i . e . ,  t o  m a i n t a i n  t h e  i r r e g u l a r  m o t i o n  work must  be  c o m p l e t e d  by t h e  r e s i s t a n c e  
f o r c e .  On t h e  o t h e r  h a n d ,  s t e a d y  i r r e g u l a r  p a r t i c l e  m o t i o n  can be  m a i n t a i n e d  o n l y  when the  
a n g l e  of  movement of  t h e  p a r t i c l e  t o w a r d  t h e  w a l l  i s  l e s s  t h a n  the  a n g l e  of  r ebound  ( t h e  
a n g l e  b e t w e e n  a n o r m a l  to  t h e  w a l l  and a t a n g e n t  to  t h e  p a r t i c l e  p a t h  a t  t h e  s i t e  of  i t s  im- 
p a c t  w i t h  t h e  w a l l ) .  In  t h i s  c a s e ,  t he  r a d i a l  componen t s  of  b o t h  t h e  Magnus f o r c e  and t h e  
r e s i s t a n c e  f o r c e  a r e  d i r e c t e d  t o w a r d  t h e  c e n t e r ,  and t h e  s i g n  of  t h e  c u r v a t u r e  of t h e  p a t h  
c o i n c i d e s  w i t h  t h e  c o r r e s p o n d i n g  s i g n  f o r  t h e  w a l l ,  i . e . ,  t he  a b o v e - m e n t i o n e d  a n g l e  of  move-  
ment t oward  t h e  w a l l  ( a n g l e  of  i n c i d e n c e )  i n c r e a s e s  f rom impac t  t o  i m p a c t  f o r  n < 1, and t h e  
particle should roll over the cylindrical lateral surface at the end of the ends. In actual 
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turbulence chambers, the side differs from a cylindrical surface by the presence of slits in 
the guide, which can serve to generate jumps solely as a result of the geometry of impact. 
It will be shown below that even a very slight difference between the lateral surface and a 
cylindrical surface gives rise to irregular particle motion and significantly slows the par- 
ticle. 

We will study the planar steady motion of a solid spherical particle in a turbulence 
chamber with a ribbed surface (Fig. 2). We will assume that the distance between adjacent 
ribs is the sought quantity, with specified values of the parameters of the carrier flow and 
particle, as well as for the restitution coefficient and the angle of rotation ~ of the plane 
of the ribs relative to a tangent to an inscribed cylinder. As the carrier flow we will ex- 
amine a gas (P/~I ~ 1) moving in accordance with the law for a solid V~=• • . The 

radial velocity of the gas will be ignored in comparison with the azimuthal velocity. Neither 
of these conditions alters the physical significance of the problem and can be changed without 
loss of simplicity and clarity in the solution. With these goals in mind, let us first omit 
consideration of the Magnus force. We will subsequently obtain a solution with allowance for 
this force. 

The equations of motion of the particle in a Cartesian coordinate system have the form 

dw~ _ L ( V ~ - - w ~ ) ,  V~ = - - •  

(2) 

dw~ _ % (gy - -  wy), Vy = xx. 

If we introduce the complex particle coordinate z = x + iv, then system (2) reduces to a 
single second-order differential equation (see [3]): 

z + ~ z - - i •  = O, 

whose solution is as follows: 

where 

z = A exp (pit) + B exp (p~t), 

4 •  16 V o o~d ) 
2 ~" (~ - + V I + @ '  I ~ = T  ~ -  3~ l ul oR " 

(3) 

Here we linearized the problem with respect to particle velocity, since in accordance with 
experiments Wr, w~<<Vo , and it is assumed that lul = const (~V0). For sufficiently large par- 
ticles, the parameter ~ ~ I, and the roots of the characteristic equation are equal to 

1',,2 = -+- ~*, 1 �9 = - T  (1 + i). 

We will examine the motion of a particle between two successive impacts corresponding to the 
moments of time t = tl, tl + T, and we will introduce the time T0[0, T]. The state of the 
particle after impact will be designated by the subscript "0," while its state at the moment 
before impact will be designated by the subscript "I," i.e., z(0) = z0, z(T) = zl. Let z0 = 
R. At the moment of subsequent impact 

Z~l = R 2. (4 )  

We write the solution of gq. (3): 

z =  Wo s h ~ T q - R c h ~ T ,  
( 5 )  

w = Wo ch ~ q- ~R sh ~T, wo = w0~ q- iw0y. 

The c o n d i t i o n  of p e r i o d i c i t y  of  t he  p a r t i c l e  mo t ion  has  t h e  fo rm 

wom=wlm , (6) 

! 

where the prime denotes a system of coordinates in which particle velocity Wlr is normal to 
the wall at the moment of impact and w~ is the tangential velocity. The relationship be- 
tween the coordinate systems is given by the equation 
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Fig. 1 Fig. 2 

Fig. I. Path of steady-state motion of particle of sugar 
sugar with d = 3 mm in a turbulence chamber of radius 
R = 0.4 m and height h = 0.6 m (see [2]). 

Fig. 2. System of coordinates and diagram of steady-state 
motion of particle. 

w' = exp (--iO) w, ,  

where w, and w' are complex velocities of the particle (W, ==mr+imp) in a cylindrical coordi- 
nate system. The particle velocities in the cylindrical and Cartesian systems are connected 
by the equation 

m, = wzlR, F: x -- iy. (7) 

Conditions (6) appear as follows in complex form 

Wo, exp (--iO) =--nwl, exp (-- iO) + i (1 @ n) I 1TI (Wl ,  exp (--i0)). (8) 

Changing over by means of Eq. (7) to the Cartesian coordinate system (Fig. 2), we use Eq. (4) 
and the form of the solution (5) to write condition (8) as follows: 

vexp(-iO)(RchI~T--~)=--w~ ~T ~- i (1 + n ) n  Irn[~exp(--iO)(Rch~T--Zl)] " s h  ~T (9) 

This relation and condition (4) give a closed system of equations for determining w0 and T. 

We will evaluate the modulus of the product /aT. The period T ~ R/Nw, where N :is the 
number of impacts per particle revolution about the axis of the turbulence chamber and w is 
the mean azimuthal velocity of the particle. Then, using the expression I~]=(~• we will 
have [~T]~_(Vo/N@)~-~/2<<I for $ >>I (see above). The angle of inclination of the slits in the 
chamber is generally very small, so that we can use the smallness of ~T and ~ to write Eq. 
(9) term by term in the form of a linear system of equations in W0x and W0y: 

Wo~ -- 0 ('t + Wo~) = (Wo~ + Owoy)In, ( 1 o) 

Woy -- 0Wo~ = (? + Woy) + 0Wo~. 

Here y =  ~v~RT. For ~ = 0, i t  f o l l o w s  from (]0) t h a t  T = 0, W0x = 0 (n ~ 1) ,  i . e . ,  the  p a r -  
t i c l e  rolls over the side of the chamber. The solution of system (]0) 

Wo~ = -- . , , /(2o), ( i i ) 

5) Wov = 1 + n 202- 1 ? 

will be used to determine T from Eq. (4), which, by virtue of the fact that zl = w0T + R, has 
the form 

T (W~x+m~,) + 2RW0x = 0. 

It follows from the last equation and (11) that 

2 n)11/2, v = l + {  1 - - n  1 2nO ~ 2. (12) T= ~ [ O / v ( O ,  ~ 1+-------~ 0 l-4-n] 
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Fig. 3. Dimensionless diagrams showing coordinate of par- 
ticle impact against the side of the chamber (a); radial (b) 
and azimuthal (c) velocities of particle in relation to the 
angle of rotation of the rib: I) n = 0.9; 2) 0.7. 

Finally, we have the following expressions for the coordinates of the impact of the particle 
against the wall at the moment of time T and the rebound velocity 

x l / R  = 1 - -  2 /% btl/R = 2( 'v--1)I /2 / 'v ,  ( 1 3 )  

w~xlR (~• = _ (O,v)-rl2, woulR (~)~12 = [( 'v--  1)/(Ov)] W2 . 

Given our assumptions, the coefficient R (%x) ̀/2=V0(3~4 p,dPR)I/2" The mean radial and azimuthal 

velocities are, respectively, equal to: 

T 

,  I;=0 < wr > -- 2 R T  - -  2R-----T 
o 

T 

< w~ > = 2iR----fi-. (wz- -wz)d'~  = t?(~)~/2F(0,  n), 
0 

F(O, n) = [ ( ,~ - -  1) ~/2 -6 0 - - ( 4 0 ) / ( 3 ~ ) 1 / ( 0 v )  ~/2 . 

It follows from Eq. (11) that the angle of inclination of the slits should not exceed a cer- 
tain value 0 < [2n/(I -- n)] I/2. For 9 ~ (1 -- n)/(1 + n), the asymptotic expressions for the 

velocities are, respectively, equal to: 

( Ww > /R  (~.x) 1/~ "+(1 /0 )  I/2 , 

wl~IR(X• l + n 01/2. 
1 - - n  

Figure 3 offers a graphical illustration of the results obtained. Since the parameter 
R(%• it is apparent that even with a large restitution coefficient, a small angle of 
inclination of the slits leads to very significant deceleration of the particle. With a cer- 
tain value of the angle ~ dependent on the restitution coefficient, the radial velocity as- 
sociated with particle impact against the wall passes through an extremum and reaches its 
greatest value. The greater the restitution coefficient, the greater this extremum. 

We now introduce the Magnus force into the discussion. If by analogy with the above we 
use a complex particle coordinate, then system (I) reduces to Eq. (3), in which we need to 
replace X by %1 = % + ik~. The roots of the characteristic equation are equal to: 

4• 2 + exp (i%) , I +  1 +  
~ "  = 2 - x ~ + (~o )  ~ ~.~ + (kco) ~ / ] 

4%• 
tg  % = 

~2 + 4•162 + (ko~) ~ 

The angular velocity of the particle is determined by the equation 

Wov = (r 
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Fig. 4. Mean velocity w (m/see) of glass 
and steel beads of different diameters in 
a turbulence chamber of radius R = 33 man 
and height h = ]2 mm in relation to the 

gas velocity in the slit V0 (m/sec): ]) 
glass, n = 0.8, d = 3.1 mm; 2-4) steel, 
n = 0.6, d = 1.55; 2.5; 4.9 ram; A = 
[(3~/4)(0R/o~d)] ~/2, ~ = 0.44; 5) steel 
cubes, d = 3.5 ram. 

in the case when impact occurs without slip, which will be assumed. The coefficient k I in 
the expression for the Magnus force is a quantity which is to some degree indeterminate, al- 
though several theoretical and empirical studies (see [I]) give k~ = 2. We will show that 
allowing for the Magnus force does not lead to irregular motion of the particle when ~ = O. 

Let 

%/(ko~)-~ 3~ [ul << 1, while 4• _ 2Vo Pld ~ 1. 
8kl wo~ k~o kwo,p pR 

The first condition corresponds to the desired solution when at 

O-+0 w~-+V~, w~-+0an~lul<w0~ 

The second corresponds to the usual experimental situation. Then 

( •  ~i/2 
~,~ = _+ ~, ~ --  ~ , - ~  / (~12 + ik~o). 

Using the procedure of expansion of condition (9) in the triviality I~T[~-'-~ << 1 and 
0 << I, we obtain the system of equations: 

(~r - -  ~oD + (~ou + ~D o = - -  (Wox + O ~ o p / n  , 

~/~ = 01~ - -  2Wo~) 0. 

Here 

from which at 0 = 0 we have T = 0, W0x = 0 at n ~ 1, i.e., the particle rolls over the lateral 
surface. 

Thus, introduction of the Magnus force into the study does not qualitatively alter the 
physical mechanism of generation of irregular motion of the particle. It changes only the 
quantitative parameters of its motion. However, since there is no unanimous agreement re- 
garding quantitative evaluation of the Magnus force and since this question requires indepen- 
dent study, in the present ease we will limit ourselves to a qualitative conclusion on the 
mechanism of particle motion formulated above. 

Figure 4 shows experimental data on the mean azimuthal velocity of particles in a tur- 
bulence chamber. Mean particle velocity w was evaluated as the rate of travel about the 
perimeter of the chamber during one revolution about its axis. The period of rotation was 
determined from the signal from a photomultiplier as the particle passed through a radial 
"light knife." In accordance with the theoretical model presented above: 

~ / R  (~• = arccos / (40/~)  . ( 1 4 )  
u 

The mean p a r t i c l e  v e l o c i t y ,  a c c o r d i n g  to (14) ,  i s  a monotonic  f u n c t i o n  of the  r e s t i t u t i o n  
c o e f f i c i e n t .  At n = l  ~/R(~•162 w h i l e  f o r  n--~0 ~/R(~• -~j~, i . e . ,  w i s  f a i r l y  
weakly dependent  on n .  In a c c o r d a n c e  w i t h  (14) ,  g l a s s  b e a d s ,  w i t h  a r e s t i t u t i o n  c o e f f i c i e n t  
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greater than steel beads, moved at somewhat greater mean velocities (Fig. 4). It was diffi- 
cult to establish quantitative agreement between the theory and the experiment, since we did 
not determine the angle 0 for a specific experimental scheme (see the scheme in Fig. 4). 
However, if we compare Eq. (14) and the test data for the steel beads, then for a certain 
mean angle we obtain the value 0 ~ 0.4 (23~ this corresponds fully to the actual situation. 

In conclusion, we should note that the results obtained depend little on the form of the 
particle. Points 5 in Fig. 4 correspond to steel cubes with an equivalent diameter d ~ 3.5 
mm. The moderate difference in the proportionally factor from the case of steel beads 
(spheres) is possibly connected with the somewhat different values of the resistance and 
restitution coefficients for the cubes. The geometry of the chamber is evidently the de- 
termining factor for the characteristics of particle motion, other conditions being equal as 
determined by the above-developed theory. 

NOTATION 

R, h, radius and height of turbulence chamber; 8, angle of rotation of plane of rib 
relative to a tangent to an inscribed cylinder; V, p, velocity of gas and its density; d, 
Pz, w, a, diameter of particle, its density, linear velocity, and angular velocity relative 
to the center of mass; u, relative velocity of particle and gas; z = x + iy, complex coordi- 
nate of particle; t, T, time; T, period of time between impacts; n, restitution coefficient; 
E, coefficient of resistance of particle; kl, numerical coefficient in the Magnus force; ~, 
B, dimensionless criteria. 
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CONVECTIVE HEAT EXCHANGE IN TURBULENT FLOW OF A GAS SUSPENSION 

WITHIN A CYLINDRICAL CHANNEL 

F. N. Lisin and I. F. Guletskaya UDC 536.244:532.529.5 

A convective heat-exchange model is presented for flow of a gaseous suspension in 
a tube, which considers the increase in heat capacity of the system and the effect 
of particles on the turbulent structure of the flow. Comparison of calculated re- 
sults with experiment shows good agreement. 

The intensity and efficiency of many heat-exchange processes in metallurgy, energy gen- 
eration, and other branches of industry are determined by phenomena occurring in gas--solid 
particle type dispersed systems. Heat exchange was treated in [I] with consideration of the 
effect of particles on the turbulent structure of the carrier flow within the framework of 
Buevich's model [2], which consists of breakoff of the shortwave portion of the turbulent 
energy spectrum. The calculation results of [I] agree well with experiment in the low par- 
ticle concentration range M ~ 6. It is of interest to consider the case of higher particle 
concentrations. 

We will write the energy equation for the turbulent flow of a gas suspension in a tube 
just as in [I], but without consideration of radiation 
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